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A two-particle Green function self-energy expansion 

R LEE 
Physics Department, Imperial College of Science and Technology, London SW7, UK 

MS received 2 December 1971 

Abstract. The two-particle self-energy operator is derived. The method is an extension of 
the Kadanoff and Baym method for the one-particle self-energy operator. The self-energy 
is then expanded to illustrate the similarities and differences with the one-particle case. An 
example is used to study the structure of the expansion. In conclusion a brief discussion of 
the one-particle method to derive the two-particle Green function is given. 

1. Introduction 

In certain systems the single-particle properties are not of primary interest and higher 
order properties of the system give the information desired. In these cases the use of 
single-particle perturbation techniques are not germane ; however, they have proved 
convenient because of their calculational simplicity. Thus single-particle properties 
(eg single-particle energy, lifetimes, etc) have been attributed to systems which are 
fundamentally collective in nature. 

The extension of the single-particle self-energy operator to an n particle form is of 
interest for these collective systems. The idea is to derive a self-energy operator which 
is not composed entirely of single-particle functions and in this way the character 
attributed to the system will not be single-particle in nature, but will describe a collective 
entity. 

In the first section a derivation of the two-particle self-energy operator is presented. 
This derivation yields an iterative equation for the self-energy operator and it is noted 
that the expansion of this equation is a functional of a set of functions. These functions 
can be chosen appropriately to suit the physical conditions of the model being examined. 

A discussion showing the similarities and differences of this expansion with the one- 
particle expansion is then given. The special case of self-broadening of spectral lines 
is used to demonstrate the specialized form of the expansion. 

In 5 4 the extension of this technique to the four-particle Green function is made. 
The difficulties inherent in this analysis lead to the suggestion of an alternate method. 
This method uses a functional differential of the two-particle self-energy operator to 
generate solutions for the four-particle Green function. 

The above derivations were preformed under the assumption of an initially diagonal 
distribution function. In using this approximation the density matrix is assumed to be 
separable at some arbitrary initial time. This assumption is explored in the next section 
and new contributions which arise from a generalized initial condition are discussed. 
In the conclusion, an analysis of the problems that would arise if the one-particle self- 
energy operator were used to generate solutions of the two-particle Green function is 
given. 
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1.1. Temperature Green function and the correlation function 

The time-correlation function method and certain types of line broadening calculations 
require the evaluation of correlation functions. These functions can be generally defined 
as the product of two time-dependent operators A(t), B(t'), whose times are not the same, 
averaged over some equilibrium ensemble. Thus, the correlation function is defined as 

(A(t)B(t ' ) )  (1.1.1) 

where the bracket will denote the average over the grand canonical ensemble. To outline 
the relationship between this correlation function and the Green function (GF) the 
occupation number representation is used. Assuming that A and B operate in the same 
subsystem and are single-particle operators this correlation function can be written 

(1.1.2) 

where A,, denotes the matrix element of operator A between the state denoted by tl 

and that denoted by p. The construction and destruction operators $:(t) and $ E ( ~ )  

denote the construction and destruction of a particle state characterized by tl at a time t. 
Clearly, a, /?, etc can denote internal and external variables that are either continuous 
or discrete. 

Now this new representation of the correlation function can be used to find the 
correspondence to the real-time two-particle GF, GI1. Then with this correspondence 
made, it can be shown how 9", the temperature Green function (99) is related by 
analytic continuation to the real-time functions (Abrikosov et a1 1961). 

Defining the retarded real-time GF, GE, 

GE(@$ ; 4 0) = -i(($:(t)~,(t)$:(o)$g(o)) 

(1.1.3) 

where 

t > O  c t < O  
@(t) = 

the transform can be taken. Thus 

J- 
+ m  

e'"'G:(t) dt = Gt(w) 

m 

and the transform of the second-quantized correlation function can then be defined as 

( 1.1.5) 
1 

Using the cyclic properties of the trace and the identity 
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equation (1.1.4) in conjunction with (1.1.5) yields 

( 1.1.6) 

This gives the correspondence between the transformed correlation function J ( w )  and 
the real-time GF G!, that is 

(1.1.7) Im Gt(w) = -$J(w)(l -e-oW).  

Now from equations (1.1.6) and (1.1.7) it can be demonstrated that 

Im G"(w') 
w'--0 

(1.1.8) 

where the P denotes the principal part of the integral. This equation indicates that the 
retarded function is an analytic function of the complex variable w in the upper half- 
plane (this follows from the Cauchy integral representation of analytic functions whose 
real and imaginary parts are related by (1.1.8)). 

The function y'', which is defined by 

e(@+$; t l b )  = ( ~ ( ~ ~ ( ~ l ) $ ~ ( ~ Z ) $ O ( t l ) ~ a ( ~ z ) ) )  

(where T, orders the imaginary times), is related to Gg by 

$'(rP$; 0) + analytic continuation -+ Ci(rPy'5; w+ ic) 

if o is positive. 

1.2. The equation of motion for  3; 

The connection has been made between the correlation function and $', now a method 
for extracting the information in this function is necessary. In order to do this the 
equation of motion for an operator C acting on a system characterized by a Hamiltonian 
Htota, will be used 

(12.1) 2 
i?t 

i- Cop = [Cop, H t o t a l l .  

Therefore 
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(1.2.3) 

= Y'(yp; tl)b,,6(t, - t2 ) -91(a6;  t1)hpy6(t1 - t,). (1.2.4) 

To calculate the equation of motion the H,,,,, must be specified. For simplicity a 
two-component system will be used ; although all of what follows can be tediously 
extended to any number of components. The two components will be labelled by A 
and B with A's subsystem being represented by the operators I//+, $ and B's subsystem 
being represented by $+, 4. Both components will have internal states and all the 
interactions will be present. Thus 

(1.2.5) 

where H o  represents the free Hamiltonian and VAB is the interaction potential of the 
superscripted subsystems. Note that the VB(A) has been added and that it is a fictitious 
potential which acts only on the B(A) subsystem. This is a purely formal device and 
when the limit VB'A) + 0 is taken the 9F returns to its usual definition. 

Using the occupation number representation of Htola, the commutator of (1.2.4) 
yields, if VAA is symmetrized 

Htotai = H i  + H ;  + V A B  + VAA + V B B  + V A  + VB 

[ i f +  Hi(a)-Hi(b) 9!A(ap?i6; t 1 t 2 )  1 
s s + d3T/$n3;~(3/?y6; t1 tz ) -  d3I/;39!~(Cd)J6; tit,) 

= 3\(yp ; t ,)6(t, - t,)8(a - 6) - 9 i ( a 6  ; tl)6(tl - t2)6()J - p). (1.2.6) 

In this equation no assumptions have been made on the form of any of the potentials 
and the new temperature 99 is a three-particle function defined by 

The two-particle self-energy operator is introduced by redefining the terms which 
contain the high order Green functions. This step will help avoid the usual hierarchy 
of equations that would be obtained if the solution for 9"' is attempted by another 
equation of motion. 

Thus, defining the self-energy operator by 
r - iP r 

(1.2.8) 
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with three others of similar form, gives a new equation of motion. Thus 

= gi(yfi; t ,)h(t, - t , ) d m a - g ~ ( ~ 6 ;  t , )d( t ,  -t2)6,,. ( 1.2.9) 

Here the Ctotal is the sum of all the self-energy operators of the type in (1.2.8). Hence, 
the left hand side is entirely dependent on 9:A which is precisely the situation desired. 
The only quantity to be determined is Z,,,,, ; now a method will be introduced to generate 
solutions for this self-energy operator. 

1.3. The iterative equation for  the self-energy operator 

Now the problem is to find a form for the self-energy operator that yields a well defined 
expansion. For simplicity the derivation of the self-energy equation will be carried out 
for only the one C in equation (1.2.8). The derivation for all the self-energy operators 
is similar ; the differences will be pointed out as the derivation proceeds. 

The first step in the derivation is to rewrite the 9"' using the functional derivative 
(see Appendix). This gives 

Thus, yielding for (1.2.8) 

To solve this equation for X i A  a matrix inverse of g!A is defined. This definition 
is purely formal and the inverse will eventually be eliminated. 

d3 d4 dt3g:~(cip34; tlt3)9:A '(y634; t2t3) = Gya6Da6(tl - t 2 ) .  (1.3.3) Ji ip 

Operating on the right of equation (1.3.2) with $9:; ' ( 5 6 ~ 6 ;  t3tz) and integrating 
over 5, 6 and t, yields 

CiA(apyG; t1t2) = - i  d l  d2Vtf2,9i(12; tl)6(tl -t,)8pa s 
d(1-5) dt3V$f,,9;~(3P45; tit,) 

(1.3.4) 

Here the fact that the functional derivative of equation (1.3.3) is equal to zero was used, 
and the convention that the indices apy6 are not variable is introduced. 
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The only term in (1.3.4) which is not known is the functional derivative of the 
inverse 9"- '. This can now be expressed in terms of the self-energy operators so that 
the expansion will be closed in the self-energy operator. 

Returning to the equation of motion (1.2.9) and operating with the appropriate inverse 
yields 

1 a 
i-+ Hi(cO - HiW 6ay6pdtl- t 2 )  + V;a(t1)a,d(t1- t 2 )  i at1 

- V;AtlPay6(t1 - t Z ) + L t a I  ( x P Y ~ ;  tlt.2) = 9"-'(~6Pm; t2tl)(n(P)-n(z)). 
(1.3.5) 

Here the inhomogeneous term has been evaluated according to the condition that the 
subsystems are initially unperturbed. The n(c1) represents the occupation number of 
the state denoted by the label c1 (DeBoer and Uhlenbeck 1965). This approximation will 
be discussed in 6 5. Hence the functional derivative of this equation produces 

So that 

X i A  (@yS;  t1t2) = -i d l  d2V:P2,9!4(12; tl)6(tl - t2)dpa s 
(1.3.6) 

(1.3.7) 

This is the equation of interest. The first terms on the right hand side and the last term 
compose the self-energy operator for the interactions VAB. Thus 

X iB (c1Py6; t1 t2)  = -i d l  d 2 V ~ ~ 2 , 9 ~ ( 1 2 ;  tl)6(tl - t2)dpa s 
(1.3.8) 

The difference in the two is the exclusion of the second and third terms in (1.3.7). 
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2. The self-energy contributions 

Now that the equations for the self-energy operators have been derived some general 
properties of these equations can be studied. This is most easily done by examining 
equations (1.3.7) and (1.3.8). 

First it is obvious that in the event that interactions were not present in the system 
X,,,,, would be identically zero. This gives rise to the noninteracting two-particle Green 
function, not the product of two single-particle Green functions. The difference between 
the 9; and 9'9' is important because i t  is an indication of the difference between the 
usual graphical expansions (Ross 1966) of the two-particle Green function and the 
method used here. For in most graphical expansions the quantity of interest is the 
single-particle Green function and its self-energy operator, which modifies the single- 
particle properties of the system. 

The initial term of the self-energy equation is a Hartree-type term. It can be repre- 
sented graphically as 

where the broken line is the interaction and the full line is a single-particle Green function. 
The squares are the delta functions of the states in (1.3.7) and (1.3.8). This term is local 
in space and therefore will affect only one of the two members of the two-particle 
function. There are four of these terms in Xtota, ,  two for each of the interactions possible. 

In equation (1.3.7), the self-energy equation arising from the interaction VAA con- 
tains an additional term. In the case of a one-particle Green function and its self-energy 
operator. this contribution would be the exchange part of the Hartree-Fock approxima- 
tion. In the two-particle case this 'exchange' contribution appears not as a VAAGL but 
as a VAAG;, . Obviously this exchange term is the only structural difference between the 
identical and nonidentical particle self-energy expansions, (1.3.7) and (1.3.8) respectively. 
Moreover, if Xtotal were iterated repeatedly these two contributions arising from the 
two subsystems A and B would mix. However, the contributions arising from the 
exchange term (VAAGZA) would not mix with the Hartree or direct terms. 

Upon a single iteration the terms of the Hartree type yield in a matrix notation 

c 5 I /V9"1.  (2.2) 

These are now analysed by treating different subsystems separately. In the case of the 
B subsystems perturbations (2.2) becomes 

(2.3) 

This represents a generalization of the usual Born approximation defined in the one- 
particle case by 

I/AB v A B q I 1  3 1 1  
' AA B B '  

VA* I / A B 3 @ ; 3 ; .  (2.4) 

This form also arises when the Hartree terms from subsystem A are iterated. In the 
two-particle self-energy operator these terms are not constrained to the case where the 
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9" is approximated by two single-particle Green functions. Indeed, if this were the case 
the usefulness of this two-particle technique would be restricted. 

The substitution of the second term in equation (1.3.7) into the functional derivative 
SX/6VA leads to an integral containing a three-particle function. This is not present 
in the first iteration of the self-energy operators of the B subsystem. This exchange term 
can be cast into the form of the generalized Born approximation by writing the three- 
particle function to lowest order in %". This is done by using the relationship 

Examining the functional derivative of the inverse given in equation (1.3.6), the lowest 
order contribution to 6Y1'/6V using 9" as an expansion parameter is 

yielding for the self-energy 

v A A v A A @  9 1 1  911 
AA AA A A '  (2.7) 

This along with the Hartree iterations form the first Born approximation for the 
A subsystem. 

In the discussion above no reference was made to the dependence of the two-particle 
Green functions on the potentials. In fact the self-energy operator is being expanded 
as a functional of more than the coupling constant. Indeed, for the cases in which the 
B subsystem's perturbations of A are considered, the mutual interactions of the particles 
in B are not in any way affected by the expansion techniques. This can be an important 
point if different situations prevail in the two systems. In particular, it is not necessary 
to specify an approximation for the particles in B before a calculation is carried out for 
the A subsystem. This is not the case in some graphical techniques. For in these graphi- 
cal techniques the approximation for the B subsystem precedes the necessary calcula- 
tions, and subsequent corrections require a completely new calculation. 

The technique derived in this paper also allows freedom in choosing the expansion 
parameters. The choice of the 3'' and the coupling constant, as is done above, is not 
the only possibility. The higher order Green functions could be used to  generate an 
expansion in terms of the fluctuations. Also, the use of the coupling constant and the 
noninteracting two-particle '39 will allow the comparison of this procedure with the 
usual coupling constant expansions. 

3. Comment on the structure of 

An interesting point arises from the structure of the self-energy expansion in the case 
where only one species of particles is present. In this case the direct and exchange terms 
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are distinct and to third order in the two-particle Green function they are not mixed. 
(Mixing of these two contributions would not occur at all if the higher order Green 
functions were chosen as the expansion parameters. However, by choosing the two- 
particle function an extra term 6C/6VA is introduced (see equations (2.5) and (1.3.6)).) 

This situation is relevant to the self-broadening of spectral lines. Here the two- 
particle Green function can be related to the dipole-dipole correlation function and its 
solution provides the lineshape profile. In the literature Ben-Rueven (1966) and Di 
Giacomo (1965) have formulated theories for perturbations of a spectral emitter (absor- 
ber). In both papers the assertation has been made that by symmetrizing the potentials 
a foreign gas broadening formulation will properly describe self-broadening. 

More recently Bezzerides (1967) has formulated a theory of self-broadening that 
included both exchange and direct interactions. There a formalism is developed for the 
use of a T matrix approximation. Both direct and exchange contributions are mixed 
at the outset by the use of a symmetrized T matrix (Kadanoff and Baym 1961 and 1962). 

Bezzerides discusses contributions to the two-particle Green function which are 
valid only to third order in in the self-energy operator. However, these contributions 
are of the same graphical form as those that would arise if a foreign gas were perturbing 
the emitter (Ross 1966). Moreover, if the foreign gas particles had an energy level that 
was degenerate with the excited level of the emitter the contributions arising from 
Bezzerides ‘exchange’ scattering could prove dominant. Hence, this type of ‘exchange’ 
does not intrinsically depend on the statistics of the particles. 

This pathological example is used to illustrate that the formalism employed by 
Bezzerides does not correctly deal with the distinguishability of the particles. Indeed, 
in this example the self- and foreign-broadening would differ only by symmetrizations 
01 the functions concerned. 

Now examining the structure of the self-energy operator a completely distinct set 
of terms arising from self-broadening is found. This set of terms implies that the exchange 
contributions are quite distinct from those connected with direct interactions. The 
fact that the two-particle Green function is of interest complicates the seemingly simple 
task of accounting for the exchange process. That is, in the case of a one-particle Green 
function to first order in the potential the proper symmetrization of the potential cor- 
rectly changes the Hartree approximation to the Hartree-Fock (Kadanoff and Baym 
1962). However, the self-energy operator for the two-particle function gives rise to 
exchange terms that are of the form VAA $!?!A. Hence no possible symmetrization could 
be used to obtain this term from the Hartree term 

Therefore, the broadening due to identical particles will be different than that due to 
foreign gases and this distinction formally exists no matter what the character of the 
system of interest, that is, density, temperature etc. 

4. The four-particle Green function 

The interesting correlation functions are not always the two-particle type. The reason 
that the two-particle Green function is examined above is that single-particle operators 
make up the correlation function. If, however, the correlation function under inspection 
were composed of two-particle operators, the four-particle Green function would be of 
interest. Illustrating the self-energy expansion technique for the four-particle Green 
function will serve to expose some of the difficulties in generalizing these techniques 
further. 
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The equation of motion for the system of identical particles with an interaction 
potential I/** is 

s a 
at1 

i- 9IV[a, I] = d5(H,, Y1v(5ay6; 11 + H,, Y1v(5/?y6 ; I] 

- H,, Y1v(apy5 ; 13 - H y 5  Y1v(a/?65 ; I]) 

+ d567(~/,,,,@'(ap2y3 ; 11 + 1/,,,,YV(a567y6 ; 11 s 
- V5,,,YV(a/?5667 ; 11 - I/56,,9v(567/?$ ; 11) I .  

(4.1.1) 

where H represents the free Hamiltonian and the fictitious external potential I/*. 
The definitions of the Green functions are 

91v(cr/?YG ; 1234 ; l l t 2 )  = ( Tr(@: (tl)@l (t  1)@ (t2)@: (t2)@,(tl)@a(tl)@3(t2)@4(t2))> (4*1.2a) 

YV(56/?7$, 1234; tit21 = ( ~ ( @ ~ ( t ~ ) l C 1 ~ ( t i ) @ ~ ( t i ) @ ~ ( t 2 ) @ ~ ( t ~ ) @ 7 ( t i )  

with UP$;  t ,  and 1234; t2 being denoted by [a and I], respectively. 
@y(tl)ll/a(tl)lC13(t2)lC14(t2))) (4.1.2b) 

Now by assuming the distribution is initially diagonal I can be written as 

I = J[a, l I ( ( (ns+l)(n,+l)(n,+l))+((n,+l)(n,+l)n,> 

- ((ne + l)(na + 1)n,> - ((na + l)(np + l)(ny + 1))) 

= 6[a, Ilf (a). (4.1.3) 

Following the same procedure as outlined in 9 1 for the two-particle case, we define 
and solve for the self-energy operator. The results are, with [ A  = A,  B, C, D; t' 

+8"(5py6; 0 6  BA; t,t')V,6Ca 

where 

-1V Q'V[U, 11 Y [a, I] = ~ 

f U1 
and Xtotal is defined by the equation of motion. 
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- H8,3'V(apy5 ; 11 - H,,S'V(ap65 ; 11) 

+ dA] Ctotal [ U ,  .4]3"[A, 11 = 6 [ ~ ,  11 s (4.1.5) 

In equation (4.1.4) the first term is the typical Hartree term; this will arise in all 
orders if the potential is a two-body operator. The next four terms are the effects of 
the perturbations that occur when similar particles interact. The iterations are straight 
forward and they provide results similar in structure to the two-particle self-energy 
operator. It should be noted that the interpretation of these terms is made exceedingly 
difficult due to the complexity of the four-particle Green function 9y. 

4.1, Alternatiue inethod 

An alternative method can be employed. Since a four-point (body or particle) fictitious 
potential can be introduced to the two-particle Green function, a self-energy operator 
that is a function of this new external potential can be derived. The derivation follows 
3 1. In matrix notation 

Now expanding the C,,,,, to the required approximation by using $9'' as an expansion 
parameter, a self-energy which is a function of V. 9''. L;;;, is obtained. Now 
taking the limit as U?: goes to zero and functionally differentiating the resulting two- 
particle Green function by U7X;3s an equation for the four-particle function is obtained 

(4.2.2) 

Here a generalized chain rule for the functional derivative was used. This equation is 
closed in 3". under the assumption that the two-particle Green function can be cal- 
culated. 

Thus, by being able to approximate a self-energy operator for the two-particle 
system, solutions for the four-particle Green function can be generated. This last 
approach is especially useful in the cases of higher order Green functions when intuition 
will not be as helpful as in the lower order cases. 

5. Initial condition 

We have presented the equations of motion using a system that is not initially correlated. 
This assumption is similar to the condition of initially random phases (Van Hove 1957) 
and diagonality (Zwanzig 1961) used in the derivation of the master equation. 

The inhomogeneous terms contain the explicit contribution of the initial state of 
the system (see the left hand side of equation (1.2.9)). However, examination of the 
equations of motion shows that replacing the full Hamiltonian in the density matrix 
not only effects the inhomogeneous term but all the averaged quantities. To discuss 
these contributions a generalized self-energy operator can be derived. 
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The derivation of the equation of motion with generalized initial conditions follows 
in the same way as the derivation in $2.  However, to arrive at  an equation for the 
self-energy operator, the inverse inhomogeneous term f - is defined by the equation 

d12f-'(1234)f(1256) = S,,S,, 

where f is the unapproximated inhomogeneous term in equation (1.2.9). With this 
the equation for X i A  can be written 

Here C;,(f(V" = 0)) is of the same form as xiA of equation (1.3.7) without the diagona- 
lization off, but with V A  the external potential in fset equal to zero. The C;,(f( V A  = 0)) 
is also of the same form as (1.3.7); however, it is understood that this term contributes 
only to the first iteration by functional differentiation o f f (  V"). With this prescription 
the self-energy operator becomes separable into two parts, one which depends on the 
dynamics of the system, that is C;,(f( V" = 0)), and a part which depends on the initial 
condition, the second and third terms in equation (5.1). 

The separation of the expansion into these two parts can be interpreted in the 
following manner. The processes which influence the 3'' can be split into those which 
start at t = 0 and those which start at later times t > 0. Those which do start at t = 0 
contribute directly to the second and third terms of (5.1). In the second case the 'colli- 
sional' nature of these contributions will be described by CiA(f(VA = 0)). Note, that 
the initial condition will affect the terms in ZiA(f (@" = 0)) through its functional 
dependence on the initial distribution. 

The choice of initial condition used in $0 2 and 3 is analogous to the condition used 
in the calculation of transport coefficients (eg Kadanoff and Baym 1962). Specifically, 
the choice is that at some time, say t > 0, the perturbations are turned on, but the 
distribution at t = 0 is described by an equilibrium ensemble. With this choice equa- 
tion (1.2.9) was derived. However, additional contributions will arise from the same 
choice of distributions in the generalized regime. Indeed, simple calculations show 
that these additional terms are not identically zero. 

The problem then is to find the effects of these extra terms. Examination of the 
self-energy equation shows that the terms that arise from C;,(f( V")) will be of higher 
order in 9" than the terms of the C i A ( f ( V A  = 0)) which were discussed above. The 
contribution from the last term in equation (5.1) is not to be grouped with the 'dynamic' 
part of the solution for 9". This is checked by substituting the X i A  of equation (5.1) 
into the equation of motion and using the relationship (1.3.3). Then these terms will 
contribute to the inhomogeneous part and act as 'driving' terms (Bezzerides 1969). 

The only one of these new contributions that is of the same order as those discussed 
in the previous sections arises from the lowest order in the inhomogeneous term correc- 
tion, that is 



962 R Lee 

The effect of this term can be estimated when the 3'' are approximated by their un- 
perturbed values. Then the analytic continuations provide the total inhomogeneous 
term and in the case of a two-level system one obtains 

with n(wl) = l/(ePU1 - 1). Where 1,0 designate the two levels with the energies w1 
and coo, respectively. A calculation using a hydrogen atom with ol0 being the Lyman 
x transition, shows that the correction term is negligible, (ie six orders of magnitude 
smaller than the original inhomogeneous term) except in a region close to the resonance 
o = wl0. However, in this region the assumption of unperturbed energies, mani- 
fested by using zeroth order Y", breaks down. In fact the addition of perturbations 
in the 3'' will make this term small for all frequencies. Thus the initial condition chosen 
in Q 2 and used in Q 3 will be justified when the system is close to equilibrium. However, 
these terms will not necessarily be small for all conditions. For instance, this would 
be the case when the atoms in a plasma are at  a temperature low compared to that of the 
charged perturbers. Then the second term in equation (5.2) will give rise to the absorp- 
tion (or emission) of radiation in the region of the resonance frequency. 

6. Conclusion 

The method examined above is useful in those cases where two-particle or higher 
correlations are of primary interest. However, the method outlined in 94.2 as an 
alternative to generating a four-particle Green function can be used to obtain the 
two-particle Green function and this method has been used previously (Kadanoff 
and Baym 1961). In this way, approximation of the single-particle self-energy operator 
and the subsequent functional differentiation of the one-particle Green function yields 
an equation for the two-particle Green function. 

This method contains certain difficulties, essentially because the lower order one- 
particle function is used to generate the two-particle function 3'' (Lee 1970). First, 
the self-energy expansion when functionally differentiated contains terms which are 
not consistent with a two-particle expansion. These terms can not be neglected by 
introducing a different set of expansion parameters because they arise in the lowest 
order. For example, in the case of subsystem B perturbing A a term 9tB arises. This 
introduces a new function that is not one of the original expansion parameters and 
can not be expressed as a function of these original parameters. That is, YfB is not a 
functional of YzA or YEB, 

Second, the functional differentiation introduces an extraneous time variable, 
and if the equation of motion is then transformed to frequency space this gives rise to 
an extraneous frequency. In order to analyse the Green function an integration over 
this frequency is required. The integration, however, requires the detailed knowledge of 
the singularities of a function similar to (1.4.7) and this is a very diacult problem. 

Therefore, when two-particle correlations are of interest this method provides a 
viable approach. The use of this self-energy expansion allows the direct examination 
of the two-body attributes of the system and in this way the collective effects of the 
system, energy spectrum, lifetime, etc are directly calculated. 

The usefulness of this two-particle self-energy expansion can be illustrated by con- 
crete examples. In a following paper (Lee 1972) an application of this method will be 
used to calculate the lineshape profile for spectral line-broadening in a plasma. 
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Appendix 1 

In this Appendix the method of functional differentiation will be examined. In order to 
generate (1.3.1), the two-particle temperature Green function will be used 

y:A(apY6; t1t2)  = ( ~ ( ~ ~ ( t 1 ) ~ ~ ( t Z ) ~ ~ ( t 1 ) ~ a ( t 2 ) ) ) ,  ('4.1) 

Now writing this in interaction representation with the fictitious potential separated 
out. one obtains 

where the time dependence of the interaction representation field operators is determined 
by H = Hi+ Hi+ VBB + VAA + VAB -t VB. Here the imaginary time domain allows 
the inclusion of all the V A  into one 9';) matrix. This inatrix is given by 

9';) = T, enp( -i dt d l  d2Vt2$T(t)$2(t) . 1 
Varying (A.2) with respect to V A  yields 

Evaluating the first variation on the right 

and calculating 6 9 ; )  one obtains 

('4.3) 

('4.4) 

Now using the fact that 

-- 6 Vtz(t1) 
sV$4(t2) - 

the functional derivative 

6126346(t l  - l 2 )  

can then be obtained. Thus 

Recalling the definitions of the various Green functions, the functional derivative 
yields 

= s:A(aflY6; tlt2)$',(12; t 3 ) - g & A ( a f l Y 6 1 2 ;  t1t2t1) .  
dY;A(@fly6 ; cl t2) 

6 V ? 2 ( t J  

(A.7) 
This, when solved for 9111, gives the result desired. 
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